Artificial Intelligence Techniques for Efficient Control of Shipboard Power Systems: A Review
Abstract
Maritime transport contributes approximately 2.5% to global greenhouse gas (GHG) emissions and faces rising operational costs due to increasing fuel prices. Optimizing shipboard energy systems has become essential to enhancing sustainability and efficiency. This paper presents a comprehensive review of artificial intelligence (AI), machine learning (ML), and deep learning (DL) methods applied to the optimization and control of ship microgrids. It highlights the architectures, challenges, and benefits of integrating AI into marine energy systems. A comparative analysis of AI-driven schemes for energy efficiency, fault diagnosis, and emission reduction is presented. The findings underline the transformative potential of AI-based control systems in enabling intelligent, adaptive, and environmentally compliant marine operations.
References
[1] Arora, N. K. (2019). Earth: 50 years challenge. Environmental Sustainability, 2(1), 1-3.
[2] UNEP, U. (2020). Emissions gap report 2020. UN Environment Programme.
[3] Gulagi, A., Alcanzare, M., Bogdanov, D., Esparcia Jr, E., Ocon, J., & Breyer, C. (2021). Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines. Renewable and Sustainable Energy Reviews, 144, 110934.
[4] Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley, A., & Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546(7660), 593-595.
[5] Moreau, V., Dos Reis, P. C., & Vuille, F. (2019). Enough metals? Resource constraints to supply a fully renewable energy system. Resources, 8(1), 29.
[6] Breyer C, Bogdanov D, Gulagi A, Aghahosseini A, Barbosa LSNS, Koskinen O, et al. On the role of solar photovoltaics in global energy transition scenarios. Prog Photovoltaics Res Appl 2017;25(8):727–45.
[7] Breyer C, Bogdanov D, Aghahosseini A, Gulagi A, Child M, Oyewo AS, et al. Solar photovoltaics demand for the global energy transition in the power sector. Prog Photovoltaics Res Appl 2018;26(8):505–23.
[8] Deal, G. (2018). Communication From the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions.
[9] Andersson, Ö., & Börjesson, P. (2021). The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications. Applied Energy, 289, 116621.
[10] IMO, Prevention of GHG Emissions from Ships, Third IMO GHG Study 2014, Final Report, 2014
[11] Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2012). The Importance of economies of scale for reductions in greenhouse gas emissions from shipping. Energy policy, 46, 386-398.
[12] Mehrzadi, M. (2020). Power management Systems for Dynamic Positioning Offshore Support Vessels: Artificial Intelligence and Optimization for Shipboard Microgrids.
[13] Skjong, E., Volden, R., Rødskar, E., Molinas, M., Johansen, T. A., & Cunningham, J. (2016). Past, present, and future challenges of the marine vessel’s electrical power system. IEEE Transactions on Transportation Electrification, 2(4), 522-537.
[14] Kim, S. Y., Choe, S., Ko, S., & Sul, S. K. (2015). A Naval Integrated Power System with a Battery Energy Storage System: Fuel efficiency, reliability, and quality of power. IEEE electrification magazine, 3(2), 22-33.
[15] Petrolium Safety Authority (PTIL) Norway. [Online]. Available: http://www.psa.no/?lang=en US
[16] Norwegian Maritime Authority (NMD). [Online]. Available: https://www.sjofartsdir.no/en
[17] Skjong, E., Johansen, T. A., Molinas, M., & Sørensen, A. J. (2017). Approaches to economic energy management in diesel–electric marine vessels. IEEE Transactions on Transportation Electrification, 3(1), 22-35.
[18] R. H. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference (PESC 04), pp. 4285–4290, June 2004.
[19] R. H. Lasseter, “Microgrids,” in Proceedings of the IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 305–308, 2002.
[20] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, ``State of the art in research on microgrids: A review,'' IEEE Access, vol. 3, pp. 890-925, Jun. 2015.
[21] F. Nejabatkhah, Y. W. Li, and H. Tian, ``Power quality control of smart hybrid AC/DC microgrids: An overview,'' IEEE Access, vol. 7, pp. 5229552318, Apr. 2019.
[22] A. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, ``AC microgrid control and management strategies: Evaluation and review,'' IEEE Power Electron. Mag., vol. 6, no. 2, pp. 18-31, Jun. 2019.
[23] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, ``Trends in microgrid control,'' IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[24] E. Hossain, E. Kabalci, R. Bayindir, and R. Perez, ``Microgrid testbeds around the world: State of art,'' Energy Convers. Manage., vol. 86, pp. 132-153, Oct. 2014.
[25] Z. Jiang and X. Yu, ``Hybrid DC-and AC-linked microgrids: Towards integration of distributed energy resources,'' in Proc. IEEE Energy Conf., Atlanta, GA, USA, Feb. 2008, pp. 1-8.
[26] C. Marnay, ``Introduction to microgrids,'' in Proc. Introduction Consor- tium Electr. Rel. Technol. 981 Solutions Berkeley Symp. Microgrids, 2005.
[27] Y. Tan, L. Meegahapola, and K. M. Muttaqi, ``A review of technical challenges in planning and operation of remote area power supply systems,'' Renew. Sustain. Energy Rev., vol. 38, pp. 876-889, Oct. 2014.
[28] Ahmed, M., Meegahapola, L., Vahidnia, A., & Datta, M. (2020). Stability and control aspects of microgrid Architectures–A comprehensive review. IEEE Access, 8, 144730-144766.
[29] A. Arulampalam, M. Barnes, A. Engler, A. Goodwin, and N. Jenkins, ``Control of power electronic interfaces in distributed generation microgrids,'' Int. J. Electron., vol. 91, no. 9, pp. 503523, Sep. 2004.
[30] A. T. Elsayed, A. A. Mohamed, and O. A. Mohammed, “Dc microgrids and distribution systems: An overview,” Electric Power Systems Research, vol. 119, pp. 407–417, 2015.
[31] Wang, C. (2013). Theoretical analysis and simulation Microgrid.
[32] M. H. Rashid, Power Electronics Handbook: Devices, Circuits and Applications. New York, NY, USA: Academic, 2010.
[33] G. F. Reed, ``DC technologies: Solutions to electric power system advancements [guest editorial],'' IEEE Power Energy Mag., vol. 10, no. 6, pp. 10-17, Nov. 2012.
[34] G. W. Arnold, ``Challenges and opportunities in smart grid: A position article,'' Proc. IEEE, vol. 99, no. 6, pp. 922-927, Jun. 2011.
[35] A. Battaglini, J. Lilliestam, A. Haas, and A. Patt, ``Development of Super- Smart grids for a more efficient utilization of electricity from renewable sources,'' J. Cleaner Prod., vol. 17, no. 10, pp. 911-918, Jul. 2009.
[36] A. T. Elsayed, A. A. Mohamed, and O. A. Mohammed, “Dc microgrids and distribution systems: An overview,” Electric Power Systems Research, vol. 119, pp. 407–417, 2015.
[37] J. Vasquez, J. Guerrero, J. Miret, M. Castilla, and L. de Vicuñanda, “Hierarchical control of intelligent microgrids,” IEEE Ind. Electron. Mag., vol. 4, no. 4, pp. 23–29, Dec. 2010.
[38] H. Kakigano, M. Nomura, T. Ise, “Loss Evaluation of DC Distribution for Residential Houses Compared with AC System,” Proc. IPEC, pp. 480-486, 2010.
[39] P. Wang, L. Goel, X. Liu, and F. Hoong Choo, ``Harmonizing AC and DC: A hybrid AC/DC future grid solution,'' IEEE Power Energy Mag., vol. 11, no. 3, pp. 76-83, May 2013.
[40] I. Patrao, E. Figueres, G. Garcerá, and R. González-Medina, ``Microgrid architectures for low voltage distributed generation,'' Renew. Sustain. Energy Rev., vol. 43, pp. 415-424, Mar. 2015.
[41] D. Fregosi, S. Ravula, D. Brhlik, J. Saussele, S. Frank, E. Bonnema, J. Scheib, and E. Wilson, ``A comparative study of DC and AC microgrids in commercial buildings ACross different climates and operating profiles,'' in Proc. IEEE 1st Int. Conf. DC Microgrids (ICDCM), Atlanta, GA, USA, Jun. 2015, pp. 159-164.
[42] U. Manandhar, A. Ukil, and T. K. K. Jonathan, ``Efficiency comparison of DC and AC microgrid,'' in Innov. Smart Grid Technol.-Asia (ISGT ASIA), Sep. 2015, pp. 1-6.
[43] Jirdehi, M. A., Tabar, V. S., Ghassemzadeh, S., & Tohidi, S. (2020). Different aspects of microgrid management: A comprehensive review. Journal of Energy Storage, 30, 101457.
[44] N. W. A. Lidula and A. D. Rajapakse, “Microgrids research: a review of experimental microgrids and test systems,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 186–202, 2011.
[45] S. Karki, M. Kulkarni, D. Michael, Mann, and S. Hossein, “Efficiency improvement through combined heat and power for on-site distributed generation technologies,” Cogeneration and Distributed Generation Journal, vol. 22, no. 3, pp. 19–34, 2007.
[46] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution, Networks, London, UK, 2009.
[47] W. El-Khattam and M. M. A. Salama, “Distributed generation technologies, definitions and benefits,” Electric Power Systems Research, vol. 71, no. 2, pp. 119–128, 2004.
[48] Mariam, L., Basu, M., & Conlon, M. F. (2013). A review of existing microgrid architectures. Journal of engineering, 2013.
[49] Zhou, Y., & Ho, C. N. M. (2016, May). A review on microgrid architectures and control methods. In 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (pp. 3149-3156). IEEE.
[50] X. Wang, J. M. Guerrero, and Z. Chen, “Control of grid-interactive AC microgrids,” Proc. IEEE ISIE 20010, pp. 2211-2216.
[51] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012.
[52] T. S. Ustun et al., “Recent developments in microgrids and example cases around the world—A review,” Renewable and Sustainable Energy Reviews, vol.15, pp. 4030–4041, 2011.
[53] I. J. Balaguer, Q. Lei, S. Yang, U. Supatti, and F. Z. Peng, “Control for grid-connected and intentional islanding operations of distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147–157, Jan. 2011.
[54] V. Verma and G. G. Talpur, “Decentralized master–slave operation of microgrid using current controlled distributed generation sources,” Proc. IEEE Int. Conf. Power Electron. Drives Energy Syst. (PEDES), Bangalore, India, pp. 1–6, 2012.
[55] Z. Xiao, J. Wu, and N. Jenkins, “An Overview Of Microgrid Control,” Intelligent Automation & Soft Computing, vol. 16, pp.199–212, 2010.
[56] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, Jan. 2011.
[57] N. Cai and J. Mitra, “A Decentralized control Architecture for a Microgrid with Power Electronic Interfaces” Proc. of the 42th Annual North American, Alinton, TX, Sep. 2010.
[58] T. Dragicevic, J. Guerrero, J. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability,” IEEE Trans. Power. Electron., vol. 29, pp. 695–706, Feb. 2014.
[59] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “State-of- Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804–2815, Jun. 2014.
[60] C. Ho, V. Cheung, and H. Chung, “Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2484–2495, Nov. 2009.
[61] Jayasinghe, S. G., Meegahapola, L., Fernando, N., Jin, Z., & Guerrero, J. M. (2017). Review of ship microgrids: System architectures, storage technologies and power quality aspects. inventions, 2(1), 4.
[62] Lan, H., Wen, S., Hong, Y. Y., David, C. Y., & Zhang, L. (2015). Optimal sizing of hybrid PV/diesel/battery in ship power system. Applied energy, 158, 26-34.
[63] Musolino, V.; Piegari, L.; Tironi, E. Technical and economical evaluation of storage systems in naval applications. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 120–127.
[64] Musolino, V.; Piegari, L.; Tironi, E. Storage systems for transportation, land handling and naval applications. In Proceedings of the Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), Bologna, Italy, 16–18 October 2012; pp. 1–9.
[65] Guerrero, M.A.; Romero, E.; Barrero, F.; Milanes, M.I.; Gonzalez, E. Supercapacitors: Alternative Energy Storage Systems. Prz. Elektrotech. 2009, 85, 188.
[66] Akinyele, D.O.; Rayudu, R.K. Review of Energy Storage Technologies for Sustainable Power Networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [CrossRef]
[67] Adhikari, S.; Lei, Z.; Peng, W.; Tang, Y. A battery/supercapacitor hybrid energy storage system for DC microgrids. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 1747–1753.
[68] Vechiu, I.; Etxeberria, A.; Camblong, H.; Vinassa, J.M. Three-level Neutral Point Clamped Inverter Interface for flow battery/supercapacitor Energy Storage System used for microgrids. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), Manchester, UK, 5–7 December 2011; pp. 1–6.
[69] Xiao, J.; Wang, P.; Setyawan, L. Hierarchical Control of Hybrid Energy Storage System in DC Microgrids. IEEE Trans. Ind. Electron. 2015, 62, 4915–4924. [CrossRef]
[70] Ghenai, C., Bettayeb, M., Brdjanin, B., & Hamid, A. K. (2019). Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Studies in Thermal Engineering, 14, 100497.
[71] N. Olmer, B. Comer, B. Roy, X. Mao, and D. Rutherford, ``Greenhouse gas emissions from global shipping, 20132015,'' in International Council on Clean Transportation. 2017, pp. 1-38.
[72] McCoy, T.J. Trends in ship electric propulsion. In Proceedings of the 2002 IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; Volume 1, pp. 343–346.
[73] Baldi, F., Ahlgren, F., Nguyen, T. V., Thern, M., & Andersson, K. (2018). Energy and exergy analysis of a cruise ship. Energies, 11(10), 2508.
[74] Pico, H. N. V., Aliprantis, D. C., & Sudhoff, S. D. (2015, June). Reachability analysis of shipboard power systems with uncertain pulsed loads. In 2015 IEEE Electric Ship Technologies Symposium (ESTS) (pp. 395-402). IEEE.
[75] Van der Burgt, J. J. A., Van Gelder, P., & Van Dijk, E. (1999, June). Pulsed power requirements for future naval ships. In Digest of Technical Papers. 12th IEEE International Pulsed Power Conference.(Cat. No. 99CH36358) (Vol. 2, pp. 1357-1360). IEEE.
[76] QUEEN MARY II Technical Information. Available online: http://www.cunard.com/documents/press% 20kits/queen%20mary%202/queen_mary_2_technical.pdf (accessed on 12 November 2016).
[77] IEEE Industry Applications Society. 1709–2010—IEEE Recommended Practice for 1 kV to 35 kVMedium-Voltage DC Power Systems on Ships; IEEE Standard: New York, NY, USA, 2010; pp. 1–54.
[78] Feng, X.; Butler-Purry, K.L.; Zourntos, T. Multi-Agent System-Based Real-Time Load Management for All-Electric Ship Power Systems in DC Zone Level. IEEE Trans. Power Syst. 2012, 27, 1719–1728. [CrossRef]
[79] Hein, K., Yan, X., & Wilson, G. (2020). Multi-objective optimal scheduling of a hybrid ferry with shore-to-ship power supply considering energy storage degradation. Electronics, 9(5), 849.
[80] Chen, X.; Wang, X. A novel wound rotor BDFIG for ship shaft generator application—Control and prototype tests. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 1196–1200.
[81] Jiang,W.; Fang, R.; Khan, J.; Dougal, R. Performance Prediction and Dynamic Simulation of Electric Ship Hybrid Power System. In Proceedings of the 2007 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 21–23 May 2007; pp. 490–497.
[82] Bosich, D.; Vicenzutti, A.; Pelaschiar, R.; Menis, R.; Sulligoi, G. Toward the future: The MVDC large ship research program. In Proceedings of the 2015 AEIT International Annual Conference (AEIT), Naples, Italy, 14–16 October 2015; pp. 1–6.
[83] Jin, Z.; Sulligoi, G.; Cuzner, R.; Meng, L.; Vasquez, J.C.; Guerrero, J.M. Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Networks. IEEE Electrif. Mag. 2016, 4, 45–57. [CrossRef]
[84] Vijlee, S.Z.; Ouroua, A.; Domaschk, L.N.; Beno, J.H. Directly-Coupled Gas Turbine Permanent Magnet Generator Sets for Prime Power Generation on Board Electric Ships. In Proceedings of the 2007 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 21–23 May 2007; pp. 340–347.
[85] Mashayekh, S.; Wang, Z.; Qi, L.; Lindtjorn, J.; Myklebust, T.A. Optimum sizing of energy storage for an electric ferry ship. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8.
[86] Schwoerer, F.;Witzig,W.F. Nuclear power today and tomorrow. IEEE Spectr. 1964, 1, 120–130. [CrossRef]
[87] Donnelly,W. Nuclear Power and Merchant Shipping; U.S. Atomic Energy Commission, Division of Technical Information: Oak Ridge, TN, USA, 1964.
[88] Guo, C.; Sun, Y.; Yuan, C.; Yan, X.; Wang, Y.; Jiang, Q. Research on power load flow calculation for photovoltaic-ship power system based on PSAT. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 443–448.
[89] Tsekouras, G.J.; Kanellos, F.D.; Prousalidis, J. Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration. IET Electr. Syst. Transp. 2015, 5, 61–69. [CrossRef]
[90] IEC 61000-4-30:2015. Electromagnetic Compatibility (EMC)—Part 4-30: Testing and Measurement Techniques Power Quality Measurement Methods; International Electro technical Commission: Geneva, Switzerland, 2015.
[91] American Bureau of Shipping. International Naval Ships, Guide for Building and Classing, Part 4 Vessel Systems and Machinery, American Bureau of Shipping; 2016 International Association of Classification Societies, Requirements Concerning Electrical and Electronic Installations; IACS Req.: Houston, TX, USA, 2016.
[92] Mindykowski, J. Case Study—Based Overview of Some Contemporary Challenges to Power Quality in Ship Systems. Inventions 2016, 1, 12. [CrossRef]
[93] Domaschk, L.N.; Ouroua, A.; Hebner, R.E.; Bowlin, O.E.; Colson, W.B. Coordination of Large Pulsed Loads on Future Electric Ships. IEEE Trans. Magn. 2007, 43, 450–455. [CrossRef]
[94] Hebner, R.E.; Davey, K.; Herbst, J.; Hall, D.; Hahne, J.; Surls, D.D.; Ouroua, A. Dynamic Load and Storage Integration. Proc. IEEE 2015, 103, 2344–2354. [CrossRef]
[95] Evans, I.C.; Hoevenaars, A.H.; Eng, P. Meeting Harmonic Limits on Marine Vessels. In Proceedings of the 2007 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 21–23 May 2007; pp. 115–121.
[96] Al-Falahi, M. D., Tarasiuk, T., Jayasinghe, S. G., Jin, Z., Enshaei, H., & Guerrero, J. M. (2018). AC ship microgrids: control and power management optimization. Energies, 11(6), 1458.
[97] Tarasiuk, T., Jayasinghe, S. G., Gorniak, M., Pilat, A., Shagar, V., Liu, W., & Guerrero, J. M. (2021). Review of Power Quality Issues in Maritime Microgrids. IEEE Access.
[98] Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. In Journal of physics: conference series (Vol. 1142, No. 1, p. 012012). IOP Publishing.
[99] Ray, S. (2019, February). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35-39). IEEE.
[100] Sheikh, S. S. (2019). BATTERY HEALTH MONITORING USING MACHINE LEARNING (Doctoral dissertation, National University of Sciences and Technology).
[101] Mahesh, B. (2020). Machine Learning Algorithms-A Review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386.
[102] Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge University, UK, 32(34), 2008.
[103] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.
[104] Mohapatra, B. N., & Panda, P. P. (2019). Machine learning applications to smart city. ACCENTS Transactions on Image Processing and Computer Vision, 5(14), 1.
[105] Watson, D. S., Krutzinna, J., Bruce, I. N., Griffiths, C. E., McInnes, I. B., Barnes, M. R., & Floridi, L. (2019). Clinical applications of machine learning algorithms: beyond the black box. Bmj, 364.
[106] Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of machine learning in real-life digital health interventions: review of the literature. Journal of medical Internet research, 21(4), e12286.
[107] Cruz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer informatics, 2, 117693510600200030.
[108] Kushwaha, S., Bahl, S., Bagha, A. K., Parmar, K. S., Javaid, M., Haleem, A., & Singh, R. P. (2020). Significant applications of machine learning for COVID-19 pandemic. Journal of Industrial Integration and Management, 5(04), 453-479.
[109] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., ... & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463-477.
[110] Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.
[111] Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment–A review. Safety science, 122, 104492.
[112] Chagas, B. N., Viana, J., Reinhold, O., Lobato, F. M., Jacob Jr, A. F., & Alt, R. (2020, January). A literature review of the current applications of machine learning and their practical implications. In Web Intelligence (Vol. 18, No. 1, pp. 69-83). IOS Press.
[113] Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.
[114] Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820.
[115] Hossain, E., Khan, I., Un-Noor, F., Sikander, S. S., & Sunny, M. S. H. (2019). Application of big data and machine learning in smart grid, and associated security concerns: A review. Ieee Access, 7, 13960-13988.
[116] Cheng, L., & Yu, T. (2019). A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. International Journal of Energy Research, 43(6), 1928-1973.
[117] Guanglei, L., Hong, Z., Dingyu, J., & Hao, W. (2018, June). Design of Ship Monitoring System Based on Unsupervised Learning. In International Conference on Intelligent and Interactive Systems and Applications (pp. 270-276). Springer, Cham.
[118] William, E. J., Manic, M., & Johnson, B. K. (2007, September). Ann relays used to determine fault locations on shipboard electrical distribution systems. In 2007 39th North American Power Symposium (pp. 143-147). IEEE.
[119] Liu, S., Sun, Y., Zhang, L., & Su, P. (2021). Fault diagnosis of shipboard medium-voltage DC power system based on machine learning. International Journal of Electrical Power & Energy Systems, 124, 106399.
[120] Hein, K., Xu, Y., Senthilkumar, Y., Gary, W., & Gupta, A. K. (2021). Rule-based operation task-aware energy management for ship power systems. IET Generation, Transmission & Distribution, 14(25), 6348-6358.
[121] Ghimire, P., Zadeh, M., Pedersen, E., & Thorstensen, J. (2020). Dynamic Modeling, Simulation, and Testing of a Marine DC Hybrid Power System. IEEE Transactions on Transportation Electrification, 7(2), 905-919.
[122] Uyanık, T., Karatuğ, Ç., & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84, 102389.
[123] Ahlgren, F., & Thern, M. (2018). Auto machine learning for predicting ship fuel consumption. In ECOS 2018-the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 17-21 June, 2018, Guimarães.
[124] Uyanik, T., Arslanoglu, Y., & Kalenderli, O. (2019, April). Ship fuel consumption prediction with machine learning. In Proceedings of the 4th International Mediterranean Science and Engineering Congress, Antalya, Turkey (pp. 25-27).
[125] Cheliotis, M., Lazakis, I., & Theotokatos, G. (2020). Machine learning and data-driven fault detection for ship systems operations. Ocean Engineering, 216, 107968.
[126] Wang, G., & Zhu, J. (2020, August). Research on Fake Data Injection Attack Detection in Intelligent Ship Power System. In Journal of Physics: Conference Series (Vol. 1607, No. 1, p. 012129). IOP Publishing.
[127] Wei, H., Nguyen, H., Ramu, P., Raju, C., Liu, X., & Yadegar, J. (2009, May). Automated intelligent video surveillance system for ships. In Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI (Vol. 7306, p. 73061N). International Society for Optics and Photonics.
[128] Han, J., Li, X., & Tang, T. (2021). Energy Management Using a Rule-Based Control Strategy of Marine Current Power System with Energy Storage System. Journal of Marine Science and Engineering, 9(6), 669.
[129] Dugad, S., Puliyadi, V., Palod, H., Johnson, N., Rajput, S., & Johnny, S. (2017, January). Ship intrusion detection security system using image processing & SVM. In 2017 International Conference on Nascent Technologies in Engineering (ICNTE) (pp. 1-7). IEEE.
[130] Abebe, M., Noh, Y., Seo, C., Kim, D., & Lee, I. (2021). Developing a Ship Collision Risk Index estimation model based on Dempster-Shafer theory. Applied Ocean Research, 113, 102735.
[131] Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. (2021). A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews, 144, 110992.
[132] Mohammadzadeh, N., Baldi, F., & Boonen, E. J. (2018, October). Application of Machine Learning and Mathematical Programming in the Optimization of the Energy Management System for Hybrid-Electric Vessels Having Cyclic Operations. In International Naval Engineering Conference and Exhibition (No. CONF).
[133] Mair, A. J., Davidson, E. M., McArthur, S. D. J., Srivastava, S. K., Schoder, K., & Cartes, D. A. (2009, April). Machine learning techniques for diagnosing and locating faults through the automated monitoring of power electronic components in shipboard power systems. In 2009 IEEE Electric Ship Technologies Symposium (pp. 469-476). IEEE.
[134] Peng, X., Wang, B., Zhang, L., & Su, P. (2021). Adaptive Online Sequential Extreme Learning Machine with Kernels for Online Ship Power Prediction. Energies, 14(17), 5371
[135] Abebe, M., Shin, Y., Noh, Y., Lee, S., & Lee, I. (2020). Machine learning approaches for ship speed prediction towards energy efficient shipping. Applied Sciences, 10(7), 2325.
[136] Amgai, R., Shi, J., Santos, R., & Abdelwahed, S. (2013, April). Machine learning based diagnosis support for shipboard power systems controls. In 2013 IEEE Electric Ship Technologies Symposium (ESTS) (pp. 405-410). IEEE.
[137] Rawson, A., Brito, M., Sabeur, Z., & Tran-Thanh, L. (2021). A machine learning approach for monitoring ship safety in extreme weather events. Safety science, 141, 105336.
[138] Fardelas, G., & Kim, S. G. (2021, August). Data-driven sustainable ship design using Axiomatic Design and Bayesian Network Model. In IOP Conference Series: Materials Science and Engineering (Vol. 1174, No. 1, p. 012003). IOP Publishing.
[139] Huotari, J., Ritari, A., Ojala, R., Vepsäläinen, J., & Tammi, K. (2019). Q-Learning Based Autonomous Control of the Auxiliary Power Network of a Ship. IEEE Access, 7, 152879-152890.
[140] Kee, K. K., & Simon, B. Y. L. (2019, February). Cloud-based iot solution for predictive modeling of ship fuel consumption. In Proceedings of the 2019 8th International Conference on Software and Computer Applications (pp. 44-49).
[141] Lang, X. (2021). Development of Speed-power Performance Models for Ship Voyage Optimization. Chalmers Tekniska Hogskola (Sweden).
[142] Jeon, M., Noh, Y., Jeon, K., Lee, S., & Lee, I. (2021). Data gap analysis of ship and maritime data using meta learning. Applied Soft Computing, 101, 107048.
[143] Vorkapić, A., Radonja, R., & Martinčić-Ipšić, S. (2021). Predicting seagoing ship energy efficiency from the operational data. Sensors, 21(8), 2832.
[144] Chan, V. C. (2020). Using a K-Nearest Neighbors Machine Learning Approach to Detect Cyberattacks on the Navy Smart Grid. NAVAL POSTGRADUATE SCHOOL MONTEREY CA.
[145] Mascaro, S., Nicholso, A. E., & Korb, K. B. (2014). Anomaly detection in vessel tracks using Bayesian networks. International Journal of Approximate Reasoning, 55(1), 84-98.
[146] Engel, M., Navot, A., Saban, I., Engel, Y., Arad, E., & Shahar, N. (2013, June). Sea Spotter: A fully staring naval IRST system. In Infrared Technology and Applications XXXIX (Vol. 8704, p. 87040K). International Society for Optics and Photonics.
[147] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695.
[148] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[149] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444 https://doi.org/10.1038/nature14539.
[150] Kudugunta, S., & Ferrara, E. (2018). Deep neural networks for bot detection. Information Sciences, 467, 312-322.
[151] Kim, T. Y., & Cho, S. B. (2018). Web traffic anomaly detection using C-LSTM neural networks. Expert Systems with Applications, 106, 66-76.
[152] Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., & Salem, A. B. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1), 68-71.
[153] Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of dentistry, 77, 106-111.
[154] Nair, L. R. (2020). RetoNet: a deep learning architecture for automated retinal ailment detection. Multimedia Tools and Applications, 79(21), 15319-15328.
[155] Yuan, Z., Liu, J., Zhang, Q., Liu, Y., Yuan, Y., & Li, Z. (2021). A practical estimation method of inland ship speed under complex and changeful navigation environment. IEEE Access, 9, 15643-15658.
[156] Mohamed, M. R., Sharkh, S. M., & Walsh, F. C. (2009, September). Redox flow batteries for hybrid electric vehicles: Progress and challenges. In 2009 IEEE Vehicle Power and Propulsion Conference (pp. 551-557). IEEE.
[157] Vrijdag, A., Stapersma, D., & Van Terwisga, T. (2010). Control of propeller cavitation in operational conditions. Journal of Marine Engineering & Technology, 9(1), 15-26.
[158] S. UNFCCC, "Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. Addendum. Part two: Action taken by the Conference of the Parties at its twenty-first session."
[159] Prousalidis, J., Hatzilau, I. K., Michalopoulos, P., Pavlou, I., & Muthumuni, D. (2005, July). Studying ship electric energy systems with shaft generator. In IEEE Electric Ship Technologies Symposium, 2005. (pp. 156-162). IEEE.
[160] Paul, D. (2020). A history of electric ship propulsion systems [history]. IEEE Industry Applications Magazine, 26(6), 9-19.
[161] Gaber, M., El-Banna, S. H., Eldabah, M., & Hamad, M. S. (2019, December). Model and control of naval ship power system by the concept of all-electric ships based on renewable energy. In 2019 21st International Middle East Power Systems Conference (MEPCON) (pp. 1235-1240). IEEE.
[162] Hemi, H., Ghouili, J., & Cheriti, A. (2014). A real time fuzzy logic power management strategy for a fuel cell vehicle. Energy conversion and Management, 80, 63-70.
[163] Wen, S., Zhang, C., Lan, H., Xu, Y., Tang, Y., & Huang, Y. (2019). A hybrid ensemble model for interval prediction of solar power output in ship onboard power systems. IEEE Transactions on Sustainable Energy, 12(1), 14-24.
[164] Chanda, N. K., & Fu, Y. (2011, August). ANN-based fault classification and location in MVDC shipboard power systems. In 2011 North American Power Symposium (pp. 1-7). IEEE.
[165] Wang, X., Li, J., & Zhang, T. (2019). A machine-learning model for zonal ship flow prediction using AIS data: A case study in the south atlantic states region. Journal of Marine Science and Engineering, 7(12), 463.
[166] Kim, K. I., & Lee, K. M. (2018). Deep learning-based caution area traffic prediction with automatic identification system sensor data. Sensors, 18(9), 3172.
[167] Li, H., Li, W., Luo, M., Monti, A., & Ponci, F. (2011). Design of smart MVDC power grid protection. IEEE Transactions on Instrumentation and Measurement, 60(9), 3035-3046.
[168] Satpathi K, Ukil A, Pou J. Short-circuit fault management in DC electric ship propulsion system: protection requirements, review of existing technologies and future research trends. IEEE Trans Transp Electrif 2018;4(1):272–91.
[169] Silva, K. M., Souza, B. A., & Brito, N. S. (2006). Fault detection and classification in transmission lines based on wavelet transform and ANN. IEEE Transactions on Power Delivery, 21(4), 2058-2063.
[170] Lima, É. M., dos Santos Junqueira, C. M., Brito, N. S. D., de Souza, B. A., de Almeida Coelho, R., & de Medeiros, H. G. M. S. (2018). High impedance fault detection method based on the short-time Fourier transform. IET Generation, Transmission & Distribution, 12(11), 2577-2584.
[171] Liu, Y., Ning, P., & Reiter, M. K. (2011). False data injection attacks against state estimation in electric power grids. ACM Transactions on Information and System Security (TISSEC), 14(1), 1-33.
[172] Gaber, M., Hamad, M. S., El-banna, S. H., & El-Dabah, M. (2021). An intelligent energy management system for ship hybrid power system based on renewable energy resources. Journal of Al-Azhar University Engineering Sector, 16(60), 712-723.
[173] Hanggara, P. O., Syai'in, M., Paradisa, P. F., Arifin, M. Z., Sarena, S. T., Syaiin, M., ... & Soeprijanto, A. (2017, October). Prototype control and monitoring system safety device from leakage ammonia at marine loading arm with comparison of Neural Network (NN) and Extreme Learning Machine (ELM) method. In 2017 International Symposium on Electronics and Smart Devices (ISESD) (pp. 85-89). IEEE.
[174] Ma, Y., Maqsood, A., Corzine, K., & Oslebo, D. (2020, June). Long short-term memory autoencoder neural networks based dc pulsed load monitoring using short-time fourier transform feature extraction. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE) (pp. 912-917). IEEE.
[175] Li, W., Monti, A., & Ponci, F. (2014). Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Transactions on Instrumentation and Measurement, 63(11), 2651-2665.
[176] Liu, Q., Liang, T., & Dinavahi, V. (2020). Deep learning for hardware-based real-time fault detection and localization of all electric ship mvdc power system. IEEE Open Journal of Industry Applications, 1, 194-204.
[177] Gaber, M., El-Banna, S., El-Dabah, M., & Hamad, M. (2021). Designing and implementation of an intelligent energy management system for electric ship power system based on adaptive Neuro-Fuzzy inference system (ANFIS). Advances in Science, Technology and Engineering Systems Journal, 6(2), 195-203.
[178] Gupta, P., Rasheed, A., & Steen, S. (2021). Ship performance monitoring using machine-learning. arXiv preprint arXiv:2110.03594.
[179] Kim, Y. R., Jung, M., & Park, J. B. (2021). Development of a fuel consumption prediction model based on machine learning using ship in-service data. Journal of Marine Science and Engineering, 9(2), 137.
[180] Yang, Y., Tu, H., Song, L., Chen, L., Xie, D., & Sun, J. (2021). Research on accurate prediction of the container ship resistance by rbfnn and other machine learning algorithms. Journal of Marine Science and Engineering, 9(4), 376.
[181] Liang, Q., Tvete, H. A., & Brinks, H. W. (2020, November). Prediction of vessel propulsion power from machine learning models based on synchronized AIS-, ship performance measurements and ECMWF weather data. In IOP Conference Series: Materials Science and Engineering (Vol. 929, No. 1, p. 012012). IOP Publishing.
[182] Tran, T. A. (2021). Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique. Journal of Ocean Engineering and Science, 6(4), 317-339.
[183] Maimun, A., Hiekata, K., Jauhari, K., Siow, C. L., & Ali, A. (2021). Estimation of ship powering in preliminary ship design using graph theory and machine learning method. In International Conference on Design and Concurrent Engineering 2021 & Manufacturing Systems Conference. September (pp. 3-4).
[184] Gkerekos, C., Lazakis, I., & Theotokatos, G. (2019). Machine learning models for predicting ship main engine Fuel Oil Consumption: A comparative study. Ocean Engineering, 188, 106282.
[185] Farag, Y. B., & Ölçer, A. I. (2020). The development of a ship performance model in varying operating conditions based on ANN and regression techniques. Ocean Engineering, 198, 106972.
[186] Yoo, B., & Kim, J. (2019). Probabilistic modeling of ship powering performance using full-scale operational data. Applied Ocean Research, 82, 1-9.
[187] Mehrzadi, M., Terriche, Y., Su, C. L., Xie, P., Bazmohammadi, N., Costa, M. N., ... & Guerrero, J. M. (2020). A deep learning method for short-term dynamic positioning load forecasting in maritime microgrids. Applied Sciences, 10(14), 4889.
[188] Hasanvand, S., Rafiei, M., Gheisarnejad, M., & Khooban, M. H. (2020). Reliable power scheduling of an emission-free ship: Multiobjective deep reinforcement learning. IEEE transactions on transportation electrification, 6(2), 832-843.
[189] Schwegmann, C. P., Kleynhans, W., Salmon, B. P., Mdakane, L. W., & Meyer, R. G. (2016, July). Very deep learning for ship discrimination in synthetic aperture radar imagery. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 104-107). IEEE.
[190] Lee, J. B., Roh, M. I., & Kim, K. S. (2021). Prediction of ship power based on variation in deep feed-forward neural network. International Journal of Naval Architecture and Ocean Engineering, 13, 641-649.
[191] Domínguez Olmedo, J. L., Mata Vázquez, J., Pachón Álvarez, V., & López Guerra, J. L. (2018). A rule-based method applied to the imbalanced classification of radiation toxicity.
[192] Lengyel, L. (2015). Validating rule-based algorithms. Acta Polytech. Hung, 12(4), 17.
[193] Hayes-Roth, F. (1985). Rule-based systems. Communications of the ACM, 28(9), 921-932.
[194] Ringland, G. A., & Duce, D. A. (Eds.). (1988). Approaches to knowledge representation: an introduction. Research Studies Press Ltd.
[195] Zheng, M., Cheng, S., & Xu, Q. (2016). Context-based mobile user interface. Journal of Computer and Communications, 4(09), 1.
[196] Calimeri, F., Germano, S., Ianni, G., Pacenza, F., Perri, S., & Zangari, J. (2018, September). Integrating rule-based AI tools into mainstream game development. In International Joint Conference on Rules and Reasoning (pp. 310-317). Springer, Cham.
[197] Shigarov, A., Khristyuk, V., & Mikhailov, A. (2019). TabbyXL: Software platform for rule-based spreadsheet data extraction and transformation. SoftwareX, 10, 100270.
[198] Liviu, T. (2018, October). FPGA Implementation of a Fuzzy Rule Based Contrast Enhancement System for Real Time Applications. In 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC) (pp. 117-122). IEEE.
[199] Kumar, R., Baz, A., Alhakami, H., Alhakami, W., Agrawal, A., & Khan, R. A. (2021). A hybrid fuzzy rule-based multi-criteria framework for sustainable-security assessment of web application. Ain Shams Engineering Journal, 12(2), 2227-2240.
[200] Agrawal, A., Alenezi, M., Kumar, R., & Khan, R. A. (2019). Measuring the sustainable-security of Web applications through a fuzzy-based integrated approach of AHP and TOPSIS. IEEE Access, 7, 153936-153951.
[201] Li, G., Zhou, H., Feng, B., Li, G., Li, T., Xu, Q., & Quan, W. (2017). Fuzzy theory based security service chaining for sustainable mobile-edge computing. Mobile Information Systems, 2017.
[202] Bustos, Á., Fuenzalida, I., Santibáñez, R., Pérez-Acle, T., & Martin, A. J. (2018). Rule-based models and applications in biology. In Computational Cell Biology (pp. 3-32). Humana Press, New York, NY.
[203] Jindal, A., Dua, A., Kumar, N., Das, A. K., Vasilakos, A. V., & Rodrigues, J. J. (2018). Providing healthcare-as-a-service using fuzzy rule based big data analytics in cloud computing. IEEE Journal of Biomedical and Health informatics, 22(5), 1605-1618.
[204] Cheng, C. W., Chanani, N., Venugopalan, J., Maher, K., & Wang, M. D. (2013). icuARM-An ICU clinical decision support system using association rule mining. IEEE Journal of Translational Engineering in Health and Medicine, 1, 4400110-4400110.
[205] Forkan, A., Khalil, I., & Tari, Z. (2014). CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Future Generation Computer Systems, 35, 114-127.
[206] Wang, Y., Sun, Z., & Chen, Z. (2019). Development of energy management system based on a rule-based power distribution strategy for hybrid power sources. Energy, 175, 1055-1066.
[207] Lopez, G. L., Rodriguez, R. S., Alvarado, V. M., Gomez-Aguilar, J. F., Mota, J. E., & Sandoval, C. (2017). Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation. Applied Energy, 205, 1478-1494.
[208] Xiong, R., Duan, Y., Cao, J., & Yu, Q. (2018). Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle. Applied energy, 217, 153-165.
[209] Du, J., Zhang, X., Wang, T., Song, Z., Yang, X., Wang, H., ... & Wu, X. (2018). Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system. Energy, 165, 153-163.
[210] Pippia, T., Sijs, J., & De Schutter, B. (2019). A single-level rule-based model predictive control approach for energy management of grid-connected microgrids. IEEE Transactions on Control Systems Technology, 28(6), 2364-2376.
[211] Sun, C., Joos, G., Ali, S. Q., Paquin, J. N., Rangel, C. M., Al Jajeh, F., ... & Bouffard, F. (2020). Design and real-time implementation of a centralized microgrid control system with rule-based dispatch and seamless transition function. IEEE Transactions on Industry Applications, 56(3), 3168-3177.
[212] Restrepo, M., Cañizares, C. A., Simpson-Porco, J. W., Su, P., & Taruc, J. (2021). Optimization-and rule-based energy management systems at the canadian renewable energy laboratory microgrid facility. Applied Energy, 290, 116760.
[213] Rafigh, P., Akbari, A. A., Bidhendi, H. M., & Kashan, A. H. (2021). A fuzzy rule-based multi-criterion approach for a cooperative green supplier selection problem. Environmental Science and Pollution Research, 1-14.
[214] Al-Falahi, M. D., Nimma, K. S., Jayasinghe, S. D., Enshaei, H., & Guerrero, J. M. (2018). Power management optimization of hybrid power systems in electric ferries. Energy conversion and management, 172, 50-66.
[215] Khooban, M. H., Gheisarnejad, M., Vafamand, N., Jafari, M., Mobayen, S., Dragicevic, T., & Boudjadar, J. (2019). Robust frequency regulation in mobile microgrids: HIL implementation. IEEE Systems Journal, 13(4), 4281-4291.
[216] Heydari, R., Gheisarnejad, M., Khooban, M. H., Dragicevic, T., & Blaabjerg, F. (2019). Robust and fast voltage-source-converter (VSC) control for naval shipboard microgrids. IEEE Transactions on Power Electronics, 34(9), 8299-8303.
[217] Mashayekh, S., & Butler-Purry, K. L. (2015). An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships. IEEE Transactions on Power Systems, 30(6), 2934-2945.
[218] Albatish, I. M., & Abu-Naser, S. S. (2019, October). Modeling and controlling smart traffic light system using a rule based system. In 2019 International Conference on Promising Electronic Technologies (ICPET) (pp. 55-60). IEEE.
[219] Ezzat, A. A., Farouk, H. A., El-Kilany, K. S., & Abdelmoneim, A. F. (2014, January). Development of a stochastic genetic algorithm for traffic signal timings optimization. In Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Montreal, QC, Canada (Vol. 10).
[220] Liu, Y., Liu, L., & Chen, W. P. (2017, October). Intelligent traffic light control using distributed multi-agent Q learning. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 1-8). IEEE.
[221] Bannerjee, G., Sarkar, U., Das, S., & Ghosh, I. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 7(3), 1-6.
[222] Pasqual, G. M., & Mansfield, J. (1988). Development of a prototype expert system for identification and control of insect pests. Computers and Electronics in Agriculture, 2(4), 263-276.
[223] Batchelor, W. D., McClendon, R. W., Adams, D. B., & Jones, J. W. (1989). Evaluation of SMARTSOY: An expert simulation system for insect pest management. Agricultural Systems, 31(1), 67-81.
[224] Boyd, D. W., & Sun, M. K. (1994). Prototyping an expert system for diagnosis of potato diseases. Computers and electronics in agriculture, 10(3), 259-267.
[225] Balleda, K., Satyanvesh, D., Sampath, N. V. S. S. P., Varma, K. T. N., & Baruah, P. K. (2014, January). Agpest: An efficient rule-based expert system to prevent pest diseases of rice & wheat crops. In 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO) (pp. 262-268). IEEE.
[226] Sicat, R. S., Carranza, E. J. M., & Nidumolu, U. B. (2005). Fuzzy modeling of farmers' knowledge for land suitability classification. Agricultural systems, 83(1), 49-75.
[227] Si, Y., Liu, G., Lin, J., Lv, Q., & Juan, F. (2007, August). Design of control system of laser leveling machine based on fussy control theory. In International Conference on Computer and Computing Technologies in Agriculture (pp. 1121-1127). Springer, Boston, MA.
[228] Liu, G., Yang, X., & Li, M. (2005, May). An artificial neural network model for crop yield responding to soil parameters. In International Symposium on Neural Networks (pp. 1017-1021). Springer, Berlin, Heidelberg.
[229] Kaul, M., Hill, R. L., & Walthall, C. (2005). Artificial neural networks for corn and soybean yield prediction. Agricultural Systems, 85(1), 1-18.
[230] Kuffel, R., Giesbrecht, J., Maguire, T., Wierckx, R. P., & McLaren, P. (1995, November). RTDS-a fully digital power system simulator operating in real time. In Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD'95 (Vol. 2, pp. 498-503). IEEE.
[231] Real Time Digital Simulator Tutorial Manual, RSCAD Version, September 2005.
[232] Adhikari, U., Morris, T. H., Dahal, N., Pan, S., King, R. L., Younan, N. H., & Madani, V. (2012, July). Development of power system test bed for data mining of synchrophasors data, cyber-attack and relay testing in RTDS. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE.
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Osama Majeed Butt, Fahad Ali, Taila Jabeen, Hafiz Muhammad Ashja Khan, Zoha Nasim

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License. Authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a CC-BY 4.0 License.